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Introduction

* Liquid crystals can flow like a liquid and are
organized in a crystal-like way;

* Their molecular orientation can be controlled by
relatively weak external fields;

e E~MV/mm for usual liquids and E~V/mm for liquid
crystals;

* Application in display technologies;
* Collective behaviour: ordering and flow;

* Order-disorder transition: by temperature
(thermotropic) or concentration (lyotropic).



Phases of a liquid crystal
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Nematic phase: the simplest type of LC, but widely used.



Liquid crystals

* A liquid crystal flows
like a liquid but its
particles may be
oriented in a crystal-
like way;

° |In the nematic
phase, the particles
are aligned;

Crystaline Nematic Isotropic
solid phase phase

 The isotropic phase
is disordered.



Anisotropic properties of
nematics

* Electrical, magnetic and optical;
* Mostly uniaxial: can be represented by a director
field n;

* Birefringence: anisotropy in the transmission of
light. Similar to crystals (below), but nematics can

flow.




Rod-like molecules
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Typical mesogens forming liquid crystalline phases
(mesophases). (PAA) p-azoxyanisole. From a rough steric
point of view, this is a rigid rod of length ~ 20°A and width
~ 5’A. The nematic state is found at high temperatures
(between 1160C and 1350C at atmospheric pressure).
(MMBA) N-(p- methoxybenzylidene)-p-butylaniline. The
nematic state is found at room temperatures (between
200C to 470C). Lacks chemical stability. (5CB) 4-pentyl-4’-
cyanobiphenyl. The nematic state is found at room
temperatures (between 240C and 350C).



Displays
Basic LCD display

Applications
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Nails in a box

Maximize packing;
Volume exclusion;
Osanger model;

Analogy with LC: isotropic-

nematic transition.




Soap bubble

Structure of lyotropic liquid crystal. The =
red heads of surfactant molecules are in
contact with water, whereas the tails are
immersed in oil (blue): bilayer (left) and
micelle (right).



Defects in liquid crystals
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Fardin, MA., Ladoux, B., Nat. Phys. 17, 172-173 (2021)




Liquid crystals and

flows

Flowing skyrmions

Poiseuille-like flow of a
nematic LC

Soft Matter, 2015,11, 4674-4685
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Active nhematics

* The particles transform energy from the environment in
directed motion;

* Elongated particles like in liquid crystals;

* Examples: mixtures of microtubule-kinesin, dense suspensions
of bacteria and shoals of fish.

Marchetti et. al., Rev. Mod. Phys. 85, 1143
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Microtubule-kinesin
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T. Sanchez et al. Nature 491, 431-434 (2012)
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Experiments Continuum simulations

Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J.M. et al. Active nematics. Nat Commun 9, 3246 (2018)

Giomi et al. .Phil.Trans.R.Soc. A372: 20130365 (2014)



a Bacterial colony

Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J.M. et al. Active nematics. Nat Commun 9, 3246 (2018)



Active nematic droplets

Active vesicle of microtubule-kinesin

Felix C. Keber et al. Science 345, 1135 (2014)

Hydra morphogenesis driven by nematic defects
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Maroudas-Sacks, Y., Garion, L., Shani-Zerbib, L. et al. Nat. Phys. 17, 251-259 (2021).



Question

How to quantify the order and the preferential alignment (if any) of elongated
particles with head-tail symmetry?




Order parameter for nematics
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Averages:

The first moment of u is not a good

(. . > - du - - - w(u) candidate for the order parameter as it
does not takes into account the
symmetry u / -u.

Second moment
1

|sotropic state <ua’LLg> — 3

00

Perfect nematic (uaZLg) = NaNg

Order parameter:

1 1
Qaﬁ - <uau5 — §5aﬁ> — S(nang — §5a5)

<(u -n)? - %> = NanpQap = g <(u ny = %>




Mean field theory for the isotropic—
nematic transition

Fly] = E[¢] - TS[4]

Potential energy

/ (u U)2

E[Y] = ZN/du/du (uw, u')Y(u)p(u')

Entropy
S=kgplhhW

— kg N(lnN—l)—zi:Ni(lnNi—l)] S[y] = _NkB/du Y(u)Iny(u)

= —Nkp Z(Nz'/N) In(N;/N)



Free energy functional for the orientational distribution function

Fly] = E[¢] — TS[¥] U=z

_ N[kBT / A W) Il ~ % / E» / du’ (u- u') 2 (w)p(u)

Find the minimum energy with respect to i

= [F[w] - f du¢(u>] 0
kT [Invy(u) + 1] — U/du’ (u-u')’Y(u') —A=0

l

p(u) = C exp[—Swms(u)]

where:

Wi (u) = —U / du’ (u - w')2(w)

8 =1/kpT



Self-consistent equation

Wi f(u) = —U/du’ (u-u')?P(u) = —Uua’uQ(u;u'ﬁ) = —Uuqug(uqug)

Assuming n in the z direction

=31 -

<'u,2> = 25 +1

(u2) = <uy> = L (1= () = (-5 +1)



Mean field potential

wns () = U [ug (uz) +u; (uy) +u (u3)]
=-U _%(—S +1) (uf +uy) + %(25 + 1)u§]
-1 2 1 2
=-U|3(=S+1) (1-u) + 325+ l)uz]

= —USu?2 + constant

Thus:
(u) = CeUS™:

Self-consistent equation

o 8/ 1\ [dud(ut pervss
2 [ dueBUSv:



Replacing x = BUS

kpT “dt (12 — et
—> 2B p = I(2) I@) = Jo dt 21( 3)¢
U fO dt ext?

Graphic solution




Landau-de Gennes theory

* Nematic-isotropic (NI) transition in liquid crystals;
* Driven by temperature;

* Analogous to the transition in magnetic materials,
but the NI is of first order;

* Order parameter: S. Polynomial expension of the
free energy.

F(z; T) :/({)-I- a1(T)zx + agfT)x* + as(T)z> + as(T)z* + - - -
v — N
© ¢ ©
as(T) = A(T — T.),

= O



Analogy with magnetic materials
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Free energy for the NI transition:

/
F($,T) = A(T~Tc§ $l+ A} \93 “f‘AL\ Sc‘

More generically:
L

W
+ O—LI(Q(P

The above free energy does not depend on the directors, only on S.
The coefficient can be calculated using mean free theory. A~ Nkp, B~NkgT,, C~NkgT,

Exercise: a) relate A, A; and A, with a, a; and a, ; b) Find the transition temperature.



Magnetic field

Projection
A
H H, = H — H”

Magnetic moments
m = o Hy =o(H - u)u

m,| = O!_LH_]_:aJ_[H—(H"U,)'U,]

Potential energy for one molecule: —m - H/2

1 1
wy(u) = —5o(H -w)* = Sau[H — (H - u)u]’
= —%aH(H u)? + %al(H - u)? + terms independent of u
1
= ——ay(H - u)? + terms independent of u Qg = O — QL

2



ag > 0 The molecules align parallel to the magnetic field

Total potential energy

N N N
Fy = —?ad«H cu)’) = _EadH - Q- H = —iadS(H . n)?
Total free energy
1 1 1 N
F@;T) = AT - T,)S? — gBS3 + ZCS‘l - STad(H . n)?

In the presence of a magnetic field, the direction of the molecules matter. The
response to a magnetic field will also depend on the degree of order S.



Response in the isotropic phase

In the presence of a magnetic field, S becomes different form zero, but small. Thus:

1 SN

F(Q;T)=-A(T-T.,)S* - =—azH?
2 2 R -9
\ M H
Minimization with respect to S:
S F B NayH?
i =0 =) =
QA(T — T,
>0 .

TS s T-oTe (Lv-r/\c>( I)L\ev\OMfw’L>
TS § He



Response in the nematic phase

* The effect in S is small (S=S,), of the order of
Oéde/kBTc

* Because the molecules align with the neighbours,
the main effect of a magnetic field in the nematic
phase is in the director field;

* To rotate the molecules in the isotropic state, one
needs: ayH? > kgT

* In the nematic phase: S.,NagH? > kgT .So, the
necessary magnetic field to rotate all the particles
is relatively small



Effect of a spatial gradient on the
nematic order

e Consider Q=Q(x) due to anchoring or external fields
for instance;

Frot = / arlf(@Q(r) + fu(@, VQ))

* The elastic term can be expanded in powers of VO,
but the smallest term is the squared one due to the

symmetry;

1
fel(Qa VQ) - 5 aﬂ’y,a’ﬂ”y’VaQIByVa/Ql@/,},/



Effect of the gradient terms in the
disordered phase

Possible terms (the other possibilities are equivalent):

1 1
fel — §K1VaQ,8’yVaQ,3’y T §K2VaQa7VﬁQ,@”y

Free energy:

1 1 1
Fuo= [dr | AT = TS + 3 KiVaQo, Voo + 3 KaVaQu Vs,



Application: local ordering induced by a wall of solid substrate.

Q S ny sz - _%Sa me - Qyz - Qz:c =0

B %x o

1 o 1 (dS\® 2 [dS
i -zysts b ()" 2 (2]

= Lar- T)/da: s2+§2(d5> ]
S 2 dx
N
Correlation length
? Diverges for T -> Tc.
> X . 2(3K1 + 2K2)
(b) = 9A(T —T,) Can also be used in
the ordered phase
2
,d S

5Ftot/5S 0 » € =95 » S = Soe_m/é



Effect of the gradient terms in the
ordered phase

Assume a constant S
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Q(r) = Sy | n(r)n(r) - ;1] ===

(a) splay

/

Rewrite the elastic term for the tensor Qab (exercise):

1
fel —_— %Kl(V g n)2 <+ 1I{g(’n -V X n)2 -+ —K3(n X V X n)2

: : >

(b) twist

K1 —splay
K2 — twist | | | |

K3 - bend w
Units: J/mor N

(c) bend



Fredericks transition

See section 5.4.4 of Doi’s book

H<H

Cc

H>H
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AxL?

Mechanism to
measure the elastic
constants (K1 in this
case).



Onsager’s theory for the isotropic—
nematic transition of rod-like

particles
* Nematic isotropic transition;

u

2D

u' —>

* Rod-like particles (L>>D);

* Lyotropic liquid crystals: transition
driven by the concentration;

(@) (b)

? The volume occupied by a particle 1 that
cannot be occupied by another particle:

/
uI 8 L
4 Veo(w, u') = 2DL?sin © = 2DL*|u x u’
-
L




Consider N particles.
Probability of particle j do not overlap particle i:

1 — ’er(’u,, u])/V

Small ©’s are entropically more favourable. This is why rod-like particles form a
nematic phase at high concentrations.

The probability 1 (u) that particle 1 points in the direction u is equal to the
probability that all other particles do not overlap particle 1:

e*~1+x_ -
N
N v (u,u,) - -
but Z = V’ ? :n/dulvex(uau/)"p(u/)
=2

Self-consistent equation

¥(u) = Cexp [—n / du'v s (u, u’)¢(u’)] n=N/V



Interaction potential:

Weg(u, u') = nkpTver(u,u') = 2nDL*kpT|u x u’
Interaction strength

If n D L? exceeds a a critical value, the isotropic state becomes unstable.

Transition (numerical solution of the self consistent equation):
nDL? > 5.1

Corresponding volume fraction

Above this concentration, the isotropic state cannot be stable, and the system
turns into the nematic state.



